Feature-Based Morphometry
نویسندگان
چکیده
This paper presents feature-based morphometry (FBM), a new, fully data-driven technique for identifying group-related differences in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between all subjects, FBM models images as a collage of distinct, localized image features which may not be present in all subjects. FBM thus explicitly accounts for the case where the same anatomical tissue cannot be reliably identified in all subjects due to disease or anatomical variability. A probabilistic model describes features in terms of their appearance, geometry, and relationship to subgroups of a population, and is automatically learned from a set of subject images and group labels. Features identified indicate group-related anatomical structure that can potentially be used as disease biomarkers or as a basis for computer-aided diagnosis. Scale-invariant image features are used, which reflect generic, salient patterns in the image. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer's (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and obtains an equal error classification rate of 0.78 on new subjects.
منابع مشابه
P 24: Evaluation of the Voxel Based Morphometry in Quantitative Analysis of Brain MRI Images
Introduction: Voxel based morphometry is a type of statistical parametric mapping that can be used to investigate the effect of diseases such as epilepsy, Alzheimer's disease and Parkinson's disease or other agent such as skills on brain structure (white matter, gray matter and cerebrospinal fluid). The aim of this study is evaluate the effectiveness of this method in detection of differen...
متن کاملFeature-based morphometry: Discovering group-related anatomical patterns
This paper presents feature-based morphometry (FBM), a new fully data-driven technique for discovering patterns of group-related anatomical structure in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between subjects, FBM explicitly aims to identify distinctive anatomical patterns that may only be present in subsets of subjects, due to disease...
متن کاملOn the Use of Morphometry Based Features for Alzheimer's Disease Detection on MRI
We have studied feature extraction processes for the detection of Alzheimer's disease on brain Magnetic Resonance Imaging (MRI) based on Voxel-based morphometry (VBM). The clusters of voxel locations detected by the VBM were applied to select the voxel intensity values upon which the classi cation features were computed. We have explored the use of the data from the original MRI volumes and the...
متن کاملExamining Brain Morphometry Associated with Self-Esteem in Young Adults Using Multilevel-ROI-Features-Based Classification Method
Purpose: This study is to exam self-esteem related brain morphometry on brain magnetic resonance (MR) images using multilevel-features-based classification method. Method: The multilevel region of interest (ROI) features consist of two types of features: (i) ROI features, which include gray matter volume, white matter volume, cerebrospinal fluid volume, cortical thickness, and cortical surface ...
متن کاملTeichmüller Shape Space Theory and Its Application to Brain Morphometry
Here we propose a novel method to compute Teichmiiller shape space based shape index to study brain morphometry. Such a shape index is intrinsic, and invariant under conformal transformations, rigid motions and scaling. We conformally map a genus-zero open boundary surface to the Poincaré disk with the Yamabe flow method. The shape indices that we compute are the lengths of a special set of geo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 12 Pt 2 شماره
صفحات -
تاریخ انتشار 2009